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A method of constructing a certain class of exact inhomogeneous solutions for 
transversely inhomogeneous electroelastic plates is presented. Two cases are 

considered: 1) the plate is a piezoactive dielectric material whose electric 
and elastic properties vary across its thickness according to some arbitrary law, 
and 2) the plate consists of alternate metal and piezoactive dielectric layers. 

The construction of homogeneous solutions for the first case was considered in [l], 
and for homogeneous plates such solutions were derived in [2]. In [3] Gol’denveizer’s 
asymptotic method was used for obtaining inhomogeneous solutions for piezoelectric 
plates homogeneous across their thickness. 

1. Let us consider the electroelastic equilibrium of a plate occupying region 51 = 
S x [-_h, h], where s is the median surface, 2h is the thickness, I? = as X 
[-A, h] is the side face, dS is the boundary of s , and a is a characteristic 

linear dimension of S . We relate the plate to a Cartesian system of coordinates 

(XI? ~2, 5s) with origin in S and the Xa -axis normal to S. We assume that 
the properties of the plate material are defined by the following relations [4,5]: 

(1.1) 

o 12 = 2c66s12 = bll - c12)s12 

ca3 = 2C44Sa3 - eda, D, = 2e15Sa3 i- qlEa (a = 1, 2) 

D3 = e3A1 + e3Js2 + e,,S,, + &33E3 

where the moduli of elasticity cii, the piezoelectric moduli ekl, and the permit- 

tivities &mm are arbitrary piecewise continuous functions 5 (x3 = hc). Note 

that functions ekl (5) may vanish on individual connected sections of variation of 

coordinate 5 , which indicates absence of piezoelectric effects in respective layers. 
The equations of electroelastic equilibrium for a medium of the described type 

can be written in vector form 

a (iw,au) + E [a (M,u) + kf,*auI + ~w,u = 0 
Ul c44 0 0 0 

@ 0 c44 0 0 
u= 

u3 ' 
MO = 

0 0 c33 e33 

'p 0 0 e33 -&33 

(1.2) 

995 
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a,=_& a+, ++, &+ 
CL 

h @=- a , A = aI2 + d2* (a = 1,2) 

where Ui are displacements, cp is the electric field potential, and M1* is the 
transpose of matrix M1. 

We assume that at the plate end faces the fo~owing boundary conditions apply; 

oka 6 *I) = qk* (EL D, (E, fl) = d* (EL E = 6, Ed, (1.3) 

k = 1, 2, 3 
Bounda~ conditions at the r plate side face are not defined in this case, since 

below we deal with the derivation of particular solutions of Eqs. (1.2) that satisfy 

boundary conditions (1.3). These solutions, which we shall call inhomogeneous, ace 
derived for the case when functions qk* (E) and d* (g) are polyharmonic. Taking 
into account that virtually any smooth function can be approximated by a poly- 
harmonic one ( e. g,, by a polynomial), such inhomogeneous solution used in conjuc- 
tion with the homogeneous ones derived in Cl] enable us to solve effectively a fairly 
wide range of boundary value problems for plates of finite dimensions. 

It, is moreover, possible to use exact solutions of the three-dimensional problem 
for analyzing the errors of solutions based on the applied theories considered in [6--81 

and others. 

2, We introduce the subsidiary relations 

Us = e (a,~, + aza,), u2 = E (a2a, - ala,) (2.1) 
41 * = 8 (a,+ + a2+), q2* = 8 (a,r,* - alz2*) (2*2) 

The substitution of (2.1) and (2.2) into (1.2) and (1.3) makes it possible to divide 
the input problem into two, as follows: 

L (e2A)V E L,V + e2AL,V = 0 (2.3) 
N (s2A)V /6=+1 FE (N,V + eaAN,V)t,Lt~ = G* 

H (e2A)a2 = &,,da2 -i-- c6,e2ha2 = 0 (2.4) 
(c44%h=ft = %2* 

where V = (a,, u3, 9) and at = (zl*, q3f, d*) are vector functions, and 

L, and N, are metric operators of the form 
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8~448 ~38 + dC44 e3d + hb 

LJ= 0 ii&j8 %d , 

0 ae&3 -&?,a 

Cl1 0 0 

L = c44a + f3c13 c44 es 

%,a + ae31 elb - 811 

c44a c44 e15 000 

No = 0 c33.a e33a , N1 = cl3 0 0 

0 e&l -Q$ e31 0 0 

First, let us consider problem (2.3) on the assumption that the vector components 
U+ and U- are of the form 

7rf = d,%rz (E), qs* = &f m (E), d* = 4*m 63 (2.5) 

where the function m (E) satisfies the equation 

Am + y2m = 0 (2.6) 

We seek a solution of the form 

v = x (5)m (5) (2.7) 

For this we substitute (2.5) and (2.7) into (2.3), and obtain for the determination of 
vector X (5) the problem 

L (-4y2)X = 0, N (-e2y2)X IL+ = d* (2.8) 
d* = (d,‘, d,*, &*)I 

Using the results of [l] it is possible to show that an operator inverse of the operat- 
or generated by problem (2.8) when y = 0 has a quadruple pole. This enables us 

to seek the solution of problem (2.8) of the form 

(2.9) 

For Eq. (2.6) we seek a solution of the form 
a3 

m = y’ 8 Ys’m* 
t==o 

(2.10) 

The substitution of (2.10) into (2.6) yields the recurrent formulas 

Am,, = 0, Am1 = -m,, . . ., Ant = -mtbl, . . . 

which imply that 4*+'mt = 0, hence the coefficients of expansion (2.10) are poly- 

harmonic functions. 
Using (2.9) and (2.10) we obtain for vector V the following expansions: 

ca 
V =Y 1-4 kzo VZkVk (2. 11) 
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V, = Em4 i; E2SX,mk_, 
S=O (2.12) 

We introduce the operator 

1 $“+a 
lim- ‘ln (*) = (2n -1. /I)! y_o ay27f+4 y 

4-l (.) 

which in expansion (2.10) “cuts out” one term of the expansion of m,, i. e. nrrl 

(m) = m,, and is commutative with operators L (&*A) and iii (e2A). 
We substitute (2.11) into the equation and boundary conditions (2.3) and act on 

the obtained expression with operator nr,. Owing to the indicated properties of that 
operator we have 

II*,,L (e2A)V = L (e2A)V,+, = 0 (2.13) 

&IV (2A)V 16_kl = N (E~A)V,+~ /6x+.1 == d*mn 

Since vector Vn+2 is determined by (2.12), hence after its substitution into 
(2.13) and equating the coefficients at like mh (& we obtain for the determina- 

tion of )i k (5) the recurrent system 

LOX, = 0, N,X, 16=fl = 0 (2.14) 

LoXI, - LIXh._l, = 0, (N,X, - NIXk_l)l;=k-l = 6,,df 
Xh = (Xkl, Xk2, X& (Ic = 1, 2, . . ., n + 2) 

where 6sk is the Kronecker delta. 

The integration of system (2.14) yields 

Xol = (e - QX,,, Xo2 = D-' (d,+ - d,-), Xo3 = 0 

X!1 = 'Ic) (5) X0.3 - (x12* + + x,3*) 5 + xn* 

5 

X,2 = j r(e - ~)d~X,, + X12*, Xl3 = - fc (e - 5)dLX02 i XI:;* 
0 0 

x2: = - s’ (x22 f z x23) d5 + f c&-jj i< 
0 0 

L 

( (CUX,~ - c13dX2* - e,dX,:,)d~ + f czdt;d!- + X21* 
0 I, 

x23 = ‘F, (5) d5&2 + x13* 
s il 
0 0 
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6 s cm - x11* ( cd5 + d,- f qdL - ds- f $5 + X23* 
0 0 0 0 

x11* = - ,fo, [d,+ - d,- - ( (cl@ (5) - c13F (5) - e& (5)) d5-L + 
-1 

1 

s (cx (5) + + g5)dC + X12* f gids +d,- f rd5 +ds- (cdC] 
--I -1 -1 -1 

x1,; = --x-l (1) [da+ - d,- - b (l)XozJ 
where 

&+l) 
-g(O)’ g = c11- c13r + e3lc, r = 8-1(c13h3 + e3le33) 

1 

c = 6-'(~3e3~ - c13e33), 8 = &33c33 + e332, gci) = s gW5 

-1 

D = fdc [g(e-Qd5. t =tha, 4 =6-1em, p = PC33 

x(5) = f(p41++jd6 
-1 

For k > 2 the quantities Xkl, X k2, Xk3 are obtained from the recurrent 
formulas 

F f 

Xrl= - 
S( 

X,,+~Xm)d~+Sc;d:x 
IJ 0 

r 

s 
(~llX~-~l- c138X~ - edX4 d5 + XH* 

-1 

xp,= frx ti--n&-t W 5 s (c&X 
k-ll + cd1~2 + elJk.--13)G + 

0 0 -1 

E 6 s s 45 (edxk-11 + e16Xk-12 - edk-13) dt i- X*, 
0 -1 
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xp3= - s’ CXk--ll& i- 1 $c J” (~~4~xk-11 + @&..12 + 
0 0 -1 

elJk-43) d5 - i Pd5 [ (eldXk-.ll + e~Jk_,, - ~Jk-~3)ds+ X,*, 
0 -1 

where the constants Xkl*, X k_12*, Xk3* are determined for k > 2 by condi- 
tions 

-1 

which are, however, insufficient for determining all X ki* (k = 2, 3, * . ., n + 
2), four of which, viz. Xnfzl*, Xntz2*, Xn+23*, Xn+lZ* remain arbitrary. Zt 

can be shown that solutions determined by these constants in the particular case of 
homogeneous biharmon~c solution derived in [ 11. 

Let us now turn to problem (2.4). We assume that 

z,k = t,*m, (g) 

Omit~ng details of the derivation of solution, we present its final form 

n-l-1 
(2.15) 

_ 
5 

a20 = 
tz+ - tf- 

(0) ' 
a21 = t2- 

5x? 
s 

c~ki~+n20~ci~dS S6,,Ci+a21* 

0 0 -1 

where the constants a2* * are determined by the conditions appearing there in parent- 
heses, and the constant azn+r* remains arbitrary. 

Let us indicate the singularities of formulas (2.12), (2.13), and (2.14). They are: 

the length of each sum is determined by the order ofpolyharmonic loading, eachsolution 
spontaneously expands in powers of parameter 8, and for small E these formulas can 

be simplified by rejecting small terms. The formulas for displacements, potential, 
voltage, and induction obviously possess these singularities, since they are obtained by 
the substitution of( 2.12) and (2.15) into (2.1) and (1.1). 
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An example of formulas for displacements and the electric field potential when 
the plate is only subjected to a normal load, i. e. 

q$o t qsf = hdafm, IQ, d,A = 0 

is provided by formulas 

[ 

n+2 
u, =D cs (e - 5) a,w + 2 e2gX,l&.p,,2_g 

s=1 1 

n-b2 

UQ==E-4 C w + x ~2sXg2mn+2--s 
671 1 

(2.16) 

C 
N-2 

cp = e+J f (5) Aw + x e2s-2X83mn+2_s 
s’dz I 

The first terms appearing in brackets in expressions for displacements can evident- 
ly be obtained by devising an applied theory based on the Kirchhoff-type hypotheses. 
Function w may be considered to be the plate deflection and E = e the neutral 
axis of its bending. Since solution (2.16) is exact, the remaining terms make pos- 

sible the evaluation of the error of such theory, depending on various parameters of the 
plate. We would stress that the formulas are also valid for rapidly changing poly- 
harmonic loads such as jca exp li (msr + ma)1 or pkexp (if&), where k and 2 
have the same even-values and therefore, enable us to analyze the error of the approx- 
imate theory, depending on load variation. 

3. Let us now consider a composite plate consisting of alternate metal and piezo- 
active layers, with the metal ones forming the plate external surfaces. Each piezo- 

active layer may be of uneven thickness. The layers are numbered as shown in Fig, 1, 

with the metal layers denoted by odd subscripts j = 1, 3, . . . , n and the piezo- 

active ones by even subscripts i = 2,4, . . .f n - 1. The thickness of each 

layerisdenotedby h,(S=1,2, . . .) andthe 
thickness of the whole plate, as previously, by 

2h. The dimensionless crosswise coordinate 

of the median surface of the s -th layer is denot- 

ed by L*. The dimensionless system of coord- 

inates 519 ED 5 is supplemented by the 

local system of coordinates Ex, Ez, 5, = 
5 - $* attached to each layer. 

Let us consider the electroelastic equi~brium 
Fig. 1 of the layered element and formulate the bound- 

ary value problem, The electroelastic equilibrium of the j layer is defined by Lame 

equations and condition tpj = const, while that of the i layer is defined by Eqs. 

(1.2). The layer are assumed to be “rigidly” joined, which means that the conjuga- 

tion conditions 
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= &+ (k = o, -$- 

where the s corresponds to the layer, must be satisfied. 
On the of each layer in addition to (3.1) the bound- 

ary condition must satisfied: 

‘pikI are potentials in metal layers either the active electric field (when 
they to be known) of the electric field induced in plate by 
anical In latter case they to be determined by the 

(3.2) 

We assume that the faces the stresses are applied: 

(3.3) 

AS assume that the right-hand sides of satisfy the equation 

= 0. are not, far, defining boundary the plate side 

The inhomogeneous solutions of this can written, after its in- 

to and vortex (whose method derivation is analgous the expounded 

above), for part (of problem) as 

22, = [(e* - i)&w 2; e?“X~;&.n&&.,_J (a = 1, 2) (3.4) 
k-l 

n+z 

u3 = E-4 [u)+ z @%2%+2-k] 
k=l 

=+2 

(3.5) 

(c13axk+12 + e38Xk+l3) %+I--kl) 

rs 22 = E‘-~ ((e* - ZJ(cla&” + clid22) w + [ccl2 - 

(e* - Q(c13r - enlc)l Aw -t- ;i E’k [~k~(‘@? + cd?) %+2-k + 

(fh3~Xkj1~ + e3$Xk+d m?z+l-k I> 

033 = 1 fl (5) dSA2w + ‘5 (c~3dXh.~ -k e3dXk3 -i- c13xk--11) %+2-k 

-1 k=3 
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Cl2 = em2 (cl1 - cB)[(e* - 

n+z 
Ud = e-l [ - fl(c) BaAw + ,z Ezk---% (C44Xk% + C44aXkl+ 

2 

%Xk3) aamn+z-k I 
n-p?. 

D a= E+ [ - ab* (5) a,Aw + x E”k--r (e15xkg $ 
k=g 

els~Xkl - EllXk3) ~a%#+-k ] 

D3 = E+ [- c&w + 9 (b* (5) A2w + Dzim,) + 
n-t-2 
kz8 &2k--2 (e&?Xkz - e3&k-ll - &&Xk3f m++.-k f 

where 

w = Xo,mn+a, Xoz = h’a2+Dy d2-) , D* = f fl (Qcig 

-1 

a, = 5*i -w2, Pi’ L + %/2 
The remaining Xkl, Xk2, Xks are determined by the recurrent formulas simi- 

lar to thee in the preceding problem. 
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The inhomogeneous solutions of the vortex problem are the same as the correspond- 

ing solutions of the preceding problem. 
Let us illustrate the application of the derived formulas on two simple examples, 

E x,a m p 1 e 1. Let us consider the electroelastic equilibrium of a plane three- 
layer element Whose external metal layers are of thickness h, , and the two inner 
piezoceramic layers are of the same thickness h, / 2 each and differ by the direc- 
tions of their initial polarization vectors. We assume the element to be deformed by 
the applied potential difference Acp = spa - ‘pi. 

In this case it is necessary to set in formulas (3.4) and (3.5) n = 9, p&f = 0 

which yields (for w = Xo2 ::-= 0)) the equalities 

rnl -- A&r3 -+ A&’ -j- A&, -I- A,, m. = -GA&, - ZA, 

where A, are arbitrary constants determined by the boundary conditions when Er = 

tl . We assume, for definiteness, that at the element ends the following conditions 
are specified: 

’ = (3c2p-” - 4g -t 48) 02s - 328 

+& (+CBCW22-$1), @= 4p(n?u) 
h + & 

where h and IL are Lame coefficients for the material of electrodes, 

E x a m p 1 e 2. We assume the described element to be deformed by bending 
moments M applied to its ends. For the induced potential difference using formulas 

(3.4) and (3.5) with condition (3.2) we, then, have 
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