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A method of constructing a certain class of exact inhomogeneous solutions for
transversely inhomogeneous electroelastic plates is presented, Two cases are
considered; 1) the plate is a piezoactive dielectric material whose electric
and elastic properties vary across its thickness according to some arbitrary law,
and 2) the plate consists of alternate metal and piezoactive dielectric layers,

The construction of homogeneous solutions for the first case was considered in [1],
and for homogeneous plates such solutions were derived in [2]. In [3] Gol'denveizer's
asymptotic method was used for obtaining inhomogeneous solutions for piezoelectric
plates homogeneous across their thickness.,

1. Let us consider the electroelastic equilibrium of a plate occupying region Q =
S X [—h, k], where S is the median surface, 2h is the thickness, I = 85 X
[—h, k] is the side face, 0S is the boundary of S, and a is a characteristic
linear dimension of S . We relate the plate to a Cartesian system of coordinates
(%1, T, Z3) with origin in S and the Z; -axis normalto S. We assume that
the properties of the plate material are defined by the following relations [4, 5]

011 = 1Sy T €182 + €13833 — €31E, (1.1
Oy2 = 13911 + €11822 + €13833 — €31E;

O3z = €13811 1 €13822 + €33833 — €33F 5

012 = 2066812 = (€11 — €12)S12

Oas = 2044Sa3 — €15Ea, Do = 2€138,3 + e By (@ =1, 2)

Dy = €581 1 €318 1 €33833 + €33E5

where the moduli of elasticity ¢;j» the piezoelectric moduli ey, and the permit-
tivities €p,m are arbitrary piecewise continuous functions § (z3 = h{). Note
that functions ex; (L) may vanish on individual connected sections of variation of
coordinate { , which indicates absence of piezoelectric effects in respective layers,

The equations of electroelastic equilibrium for a medium of the described type
can be written in vector form

8 (MydU) + ¢ [8 (M,U) + M,*3U] + e2M,U = 0 (1.2
uy Csa O 0 0
Us 0 Casq 0 0

U= Uus ’ M, = 0 0 ec3 €33
P 0 O e —exn

995
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0 0 cuady disdy

M, = 0 0 chfe ei0: ,

c130; €130 0 0

ead; endy O 0

cud® + Coo®  (Cro + Ces) B0z O 0
M (Cra -+ Co5) 0102 Coe0n® + cuuds? O 0

L 0 0 cad e
0 0 815A — 811A
. a o ad _ xa, _ X3

aaw—g;, d——-a—g—, fa=—2, L=—-
8=—k-, A=612+622 (a: 1,2)

where u; are displacements, ¢ is the electric field potential, and M,* is the
transpose of matrix M, .

We assume that at the plate end faces the following boundary conditions apply:

O (8 1) = g»* (), D3 (§, 1) =d* (€), & = (& E2)s (1.3)
k=1,2,3

Boundary conditions at the I' plate side face are not defined in this case, since
below we deal with the derivation of particular solutions of Eqs. (1.2) that satisfy
boundary conditions (1,3), These solutions, which we shall call inhomogeneous, are
derived for the case when functions ¢,* (§) and d* (§) are polyharmonic. Taking
into account that virtually any smooth function can be approximated by a  poly-
harmonic one ( e, g., by a polynomial), such inhomogeneous solution used in conjuc-
tion with the homogeneous ones derived in [1] enable us to solve effectively a fairly
wide range of boundary value problems for plates of finite dimensions,

It, is moreover, possible to use exact solutions of the three-dimensional problem
for analyzing the errors of solutions based on the applied theories considered in [6—8]
and others.

2. We introduce the subsidiary relations

Uy = & (0,8; + 05a5), up = & (085 — 0,8,) 2.1
@t = & (OT* + 0,1%), @F = & (Fm* — O1TpY) (2.2)

The substitution of (2. 1) and (2. 2) into (1. 2) and (1.3) makes it possible to divide
the input problem into two, as follows:

L (e2A)V = L,V + e?AL,)V = 0 (2.9
N (e2A)V f=sy = (NoV + e?ANV)i—yy = 0=
H (82A)a, = Ocy0ay + ceee?Aay = 0 (2.4)

(caafar)r=41 = Tt

where V = (ay, U, @) and ot = (t;%, gg*, d*) are vector functions, and
L, and N, are metric operators of the form
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Ocas0 €130 + Ocay €310 - Oeyg
Ly=] O 0ca30 Oegsd ,
0 degsd — Ogggd
cn 0 0
Ly = {ced + Ocis can €15
€50 + des; ey — ey
€l cCu e 0 00
No=1] 0 ¢330 exd ||, Ni=|cs 0 O
0 el —esd e 0 0

First, let us consider problem (2, 3) on the assumption that the vector components
6t and o are of the form

0t = diEm (), gst = dpt m (8), d* = dyFm () (2.5)
where the function m (§) satisfies the equation
Am + y'm =0 (2.6)
We seek a solution of the form

V=X (t)m (8) 2.7

For this we substitute (2,5) and (2. 7) into (2.3), and obtain for the determination of
vector X ({) the problem

L(—e?)X =0, N (—e9)X [—ga = d* (2.8)
d:t = (dli’ d2i1 dsi)l

Using the results of [1] it is possible to show that an operator inverse of the operat-

or generated by problem (2.8) when y = 0 has a quadmuple pole, This enables us
to seek the solution of problem (2,8) of the form

R (2.9)
X = (e) ‘kE (ev)** X
=0
For Eq. (2.6) we seek a solution of the form
m=v 3 ym, (2. 10)
=0

The substitution of (2, 10) into (2. 6) yields the recurrent formulas
Amo - O, Aml = —Mypy + « « Amt = —My—gy « o

which imply that A'lm, = 0, hence the coefficients of expansion (2. 10) are poly-
harmonic functions,
Using (2. 9) and (2. 10) we obtain for vector V the following expansions:

V=it kgo PV (2.11)
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k
Vi =&t D) exXomy_, (2.12)
8==0
We introduce the operator
Min () = —prr lim o i (1)
(2n |- A V0 3Y2"+4

which in expansion (2. 10) "cuts out" one term of the expansion of my, i.e, I,
(m) = m,, andis commutative with operators [ (g2A) and N (e2A).

We substitute (2, 11) into the equation and boundary conditions (2. 3) and act on
the obtained expression with operator 1l;;,. Owing to the indicated properties of that
operator we have

ML 28V = L (£2A)V s, = 0 (2.13)
N (e2A)V iy = N (82A) Vs fg—s1 = dEmy

Since vector V.., is determined by (2, 12), hence after its substitution into
(2.13) and equating the coefficients at ike ~ my (§), we obtain for the determina-
tion of Xy (§) the recurrent system

LXo =0, NoXglg=g1=0 (2.149)
LoXy — LiXjop, = 0, (NoXy — N Xpot)g=r1 = 8ppd*
Xp = (Xun Xpay Xng) (k= 1,2, ..., n+2)
where §,, isthe Kronecker delta,
The integration of system (2.14) yields
Xog = (6 — DXopy Xopg =D (dy" —dy), Xoy=0
X = H (@) Xoo — (Xuo* + 5 Xig*) L+ Xn*
& v
Xie= | rle—0)dtXo 4 Xu* Xu=—§cle—DdiXp + Xu*
0 0

4 4
— S (X22 + ?5 Xzs) dg + S caad§ X
44
0 0
: :
S (C“X“ —_ 6'13an2 —_— e;uOXg;;) d€ + S Cz,}dcdg— + Xgl*

4 )

X22 = }"(E)d(:Xog—— X13* § I:q%(g —§*r—ei—'€:| dC— XIZ* X

Ly

:
\ redg -+ \ rd;Xu dy” td§+d5 Sqdc+ Xao*
0

Ov\

1]
4
Xos = SFl(’;)dCon+X13 § pr(§) 4+ ¢ — 615 C]dC+X12 x
0 [}
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4 9
cdl + dy~ S qdt — ds S pdf + Xo5*
0

0

§0Cd§ — Xn*

0

Xu* = 5[4 — a7 — § (b ©) — e ©) — ey () dbXn +
-1

Sl

§(ex (©)+ 2= gL)dg + Xn* §gcd§ +ds §rdc rar o]

—1 —1 -1 —_
Xig* = —x1 (1) [dg* —dy” — b (1) X ool
where
e .
e = -g'w , g =cn—Cwr+enc, r=08"(cuts+ esels)

¢ = 071 (383 — C19€33), O = €35Ca +- €’y P = ) gtidL
1 -

D= fd [gle—0dt, t=087en, q=08%n p=08Tc
-1 _ -
4 4
v = §a| Sg(e—C)dC—Sr(e—-C)d€J~ Sc(e—odg]
v %
FRy=t §dr gle—Ddt+ @+ rb(©
-1 -

[4 t
@)y =q \dt $gle—0)de—pb@) —co (@)
-1

-1

b(l) = Scd;[%j §g<e-—§)d§+( 2 )§c<enc)d§]

¢ 2.
@ = { (en+ 22 dt

For k> 2 the quantities Xj;, Xpg, X3 are obtained from the recurrent
formulas

t t
X = — 5 (Xue + 22 Xiyo) g + S caldt x

4
S (€nXg—n1 — €130 X 52 — €510Xgs)dl + Xja*

9
Xio = Ser_ndg + ftdg f(c“axk_u + caaXy—12 + €15 Xx—13) AL +
o -

9 4
y qdg ‘S. (€150 X —11 + €16 Xk—12 — Enn Xx—13) AL + Xe
¢ .~
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: rog
Xz = — SCXk-nfig + j gdt j(044an~11 + CaaXymae +
b -1

4 4
ey X y—1s) 4L — _S pdg S (€50 Xj—11 + €15 X515 — en Xy—p3)dl+ X
3 =

where the constants X p,*, Xp_1»*, Xps* are determined for % > 2 by condi-
tions

1

S(CnX ke — cdX k12 — es0X k+13) al =0
—1

1

5 (€440 X1 + caa Xy + €15 X ) dl = 0
]
1

S(eiﬁanl + e Xye —enXps)dl =0
1

which are, however, insufficient for determining all X;* (k= 2,3,.. ., n +
2), four of which, viz. Xp* Xpean®, Xnsng®, Xprp*  remain amitrary, It
can be shown that solutions determined by these constants in the particular case  of
homogeneousbiharmonic solution derived in [1].
Let us now tum to problem (2.4). We assume that

Tt = tatm, (§)

Omitting details of the derivation of solution, we present its final form
n-41

@y = &2 52!) £ a9, (C) My 415 (E) (2.19)
tyt — 1y~ € P
Ao = ——r—> Ou = f2 S caadl 4+ azag €4a S Ceedl - aor*
Cee 0 0 -1
9 4 1
Aoy = 5 Cﬁdi‘; 5366*9523—1{1; + ass*, Cf(s?;) = S €esdl
—1 —1

(s=2?3,...,n+1)
1
(Scssaesd§=0)
-—‘

where the constants a,,* are determined by the conditions appearing there in parent-
heses, and the constant  @y,4™ remains arbitrary,

Let us indicate the singularities of formulas (2. 12), (2, 13), and (2.14). They are;
the length of each sum is determined by the orderof polyharmonic loading, each solution
spontaneously expands in powers of parameter &, and for small e these formulas can
be simplified by rejecting small terms. The formulas for displacements, potential,
voltage, and induction obviously possess these singularities, since they are obtained by
the substitution of (2, 12) and (2.15) into (2. 1) and (1. 1).
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An example of formulas for displacements and the electric field potential when
the plate is only subjected to a normal load, i.e.

B o - = P PN 2
9g =V, gy~ = hdy™m, (§), dyT=0

is provided by formulas

n42
ug=ge78 [(e ) 0w -+ 21 e”xuammmz_s] (2. 16)
s=1
n-H2
Uy =g~ [w + Z engszmnH-s]
8=1

-2
Q=2 [f &) Aw + % 323‘2x,3mn+2_s]

B (dst — ) ¢ bl)
w=“‘-‘—“ﬁ"“"“‘—mn+2 f(%):‘:sc(e_g)dgﬂ— %(1)
0

The first terms appearing in brackets in expressions for displacements can evident-~
ly be obtained by devising an applied theory based on the Kirchhoff-type hypotheses.
Function w may be considered to be the plate deflection and E = ¢ the neutral
axis of its bending, Since solution (2, 16) is exact, the remaining terms make pos-
sible the evaluation of the error of such theory, depending on various parameters of the
plate. We would stress that the formulas are also valid for rapidly changing poly-
harmonic loads such as  x, exp [i (mz; + nzy)] or pFexp (i0i), where & and 1
have the same even-values and therefore, enable us to analyze the error of the approx-
imate theory, depending on load variation,

3. Letus now consider a composite plate consisting of altemate metal and piezo-
active layers, with the metal ones forming the plate extemal surfaces, Each piezo-
active layer may be of uneven thickness, The layers are numbered as shown in Fig, 1,
with the metal layers denoted by odd subscripts j = 1, 3, . . ., » and the piezo-
active ones by even subscripts i = 2, 4, ..., n—1. The thickness of each
layer is denoted by kg (=1, 2, . ..) and the

thickness of the whole plate, as previously, by
1 - 2h. The dimensionless crosswise coordinate
<& N \\\\\% of the median surface of the § -th layer is denot-
/ z. edby §*, The dimensionless system of coord-
ZZANARVANNNNANNANY 2 inates k., &, L  issupplemented by the
L local system of coordinates B, B, G =
Ty T — Ts* attached to each layer,
Let us consider the electroelastic equilibrium
Fig.1 of the layered element and formulate the bound-
ary value problem, The electroelastic equilibrium of the j layer is defined by Lamé
equations and condition @; = const, while that of the i layer is defined by Eqgs.
(1.2). The layer are assumed to be "rigidly" joined, which means that the conjuga-
tion conditions

<3
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(53] L8]
w5 ) = et g, — 2a1) -

/ h
o (5 o) = o (5 — ML) (=1,2.3), 0, =%

where the subscript s corresponds to the s layer, must be satisfied.
On the faces of each i layer in addition to condition (3, 1) the following bound-
ary condition must be satisfied;
(!)
== Qi1

i @5
CP{‘) (gy T) = Qi1 (9() (

where @;3, are potentials in metal layers of either the active electric field (when
they are to be assumed known) or of the electric field induced in the plate by mech-
anical effects, In the latter case they are to be determined by the supplementary con-
ditions

(§9 (& 5 ez =0 (3.2
s

We further assume that at the faces the following stresses are applied:

5 - On + (% 3.3
o (8 — ) =0 ® R[5 =a’® @9

As previously, we assume that the right-hand sides of (3, 3) satisfy the equation
Agyt = 0. We are not, so far, defining boundary conditions at the plate side face.
The inhomogeneous solutions of this problem can be written, after ifs splitting in-
to potential and vortex parts (whose method of derivation is analgous to the expounded
above), for the potential part (of the problem) as
n+4-2
Uy = 3 [(e* — 0) 0w + D) e Xyloingoy] (0= 1,2) (3.4)
k=1

n-p2
uy = e~ [w+ kZ €% X yoMin ot |
=1

n—_}-z .
00 = &2 [ Q) Aw + 2 ¥ Xigmnys ]

Oy = £72 {(8* — )ends® + crefa®) w + [cey — (3.9)
n-+2
(e* — D)crgr — enc)] Aw 2.! e [ X1y (c1ufr® -+ €19058) Mnga—x +

(€130 X y-r12 + €310 X gpp13) Mg —k ]}
o = £721(€* — L)(c1a0® + ende?) w - [eey; —
n+2
(e* — L) cwr — enc)] Aw -+ k2'1 e [ X1 (€120)% + ¢1102%) Mpto—k =4

(CxaaX itz - €210 X5 100) Mapyox 1}
n42

Oy = S f1(C) dEA*w - Z, (390 X o + €330 X 33 + 10X g—11) M po—k

k=38
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n+42
012 = €72 (e — cna)[(e* — ) 010w + Zx Sszklaifﬁmﬂ—;-zwk]
k=1
n+2
Oas = &7 [— f1 (L) ulw + kg; 822 (244 Xy + €440 X1 +

15X ks) Oalfin o —k }
n-+2

Dy = e[ — 8b* () 0uAw 4 D) =2 (5 X s +
k=2
150X 11 — £11Xx3) GaMn ok ]

Dy = &7 [— cuiAw + €2 (b* (§) A®w + Dyim,,) +
n-4-2

}2{3 82 (€000 X o — e Xp—11 — €339 X ko) Mnpoy ]
where
1
b {dot — dy~
w= XoMppa, Xoo =-Q-5;-—2"l, D* = Sfl(C)dC
<1
1 1
e = (g0 — (eselPdr)(g® — §escl®t)”, o= si(c? — exef?)
—1 -1
By . Bs B;
§i = ( S pdi;) , o™= S ctrdg, g = 5‘ qdg
% %4 %

4 14
A@) = [lecu+g(e* =01, /@) = | Tpes +c(e* —8)de
-] a;

Do = Xy + s:6PX1o* — 5:6¥ X * + 5108002 — (@iga — Qi) i
By

4
I=s | [a _fl £ () dE — pb* (©) — cy* (D)1 &

2

PO =\ [0+ 00 - §(r (e* — 1)+ qew)dL ) d&

0

[ A+ (ou +-22) /O O ] L,

Csg

L P

b*(Q) =

-1

X1 = P*(§) Xo2 — X1o*t + Xyp*
|4

Xy = S[" (e* —T) -+ geul AL Xy 4+ Xio*, X@ = FOUE) Xoa
[t]

o =¥ —0y2, Bi=0+o,/2

The remaining Xy, Xy, Xpy are determined by the recurrent formulas simi-
1ar to those in the preceding problem,
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The inhomogeneous solutions of the vortex problem are the same as the correspond-
ing solutions of the preceding problem,

Let us illustrate the application of the derived formulas on two simple examples,

Example 1 Letus consider the electroelastic equilibrium of a plane three-
layer element whose external metal layers are of thickness 4, , and the two inner
piezoceramic layers are of the same thickness h,/2 each and differ by the direc-
tions of their initial polarization vectors, We assume the element to be deformed by
the applied potential difference Ag = ¢, — ¢,.

In this case it is necessary to set in formulas (3.4) and (3.5) n = 0, @& = (
which yields (for w = Xy, == 0),  the equalities

my = AgE% -+ AaE® + 4,8, - Ao, mp == —04,8, — 24,

where A, are arbitrary constants determined by the boundary conditions when §; =
1. We assume, for definiteness, that at the element ends the following conditions
are specified;

1 1 1
Y%lgdg: & Dydf == 5 ugdf{==0
-1 -1 -l

Then
uy = ¢ hBAQLE;, ug = e thBAg (1 — §?)

o=5 § waz—pk (1 +2) | do+ o
B o 1
Gn-——*(ng-—Kc} A(p, Dg= KA(p, 513:91=8
12¢p™1w,
B=ap T2y + 4P oF — 328

dp (A +p)
A-+2u

where A and p are Lamé coefficients for the material of electrodes,

- _1,(__‘_ 2 g
K=o\ cBeo? —1), =

Example 2., We assume the described element to be deformed by bending
moments M applied to its ends, For the induced potential difference using formulas
(3.4) and (3. 5) with condition (3. 2) we, then, have

Ao L BcosM
=TI E—p ot
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